High-Performance Rotation Invariant Multiview Face Detection

Rotation invariant multiview face detection (MVFD) aims to detect faces with arbitrary rotation-in-plane (RIP) and rotation-off-plane (ROP) angles in still images or video sequences. MVFD is crucial as the first step in automatic face processing for general applications since face images are seldom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2007-04, Vol.29 (4), p.671-686
Hauptverfasser: Huang, Chang, Ai, Haizhou, Li, Yuan, Lao, Shihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rotation invariant multiview face detection (MVFD) aims to detect faces with arbitrary rotation-in-plane (RIP) and rotation-off-plane (ROP) angles in still images or video sequences. MVFD is crucial as the first step in automatic face processing for general applications since face images are seldom upright and frontal unless they are taken cooperatively. In this paper, we propose a series of innovative methods to construct a high-performance rotation invariant multiview face detector, including the width-first-search (WFS) tree detector structure, the vector boosting algorithm for learning vector-output strong classifiers, the domain-partition-based weak learning method, the sparse feature in granular space, and the heuristic search for sparse feature selection. As a result of that, our multiview face detector achieves low computational complexity, broad detection scope, and high detection accuracy on both standard testing sets and real-life images
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2007.1011