A 90-nm CMOS Low-Power GSM/EDGE Multimedia-Enhanced Baseband Processor With 380-MHz ARM926 Core and Mixed-Signal Extensions

To meet the widely varying speed and power requirements of multifunctional mobile devices, an appropriate combination of technology features, circuit-level low-power techniques, and system architecture is implemented in a GSM/Edge baseband processor with multimedia and mixed-signal extensions. Power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2007-01, Vol.42 (1), p.134-144
Hauptverfasser: Lueftner, T., Berthold, J., Pacha, C., Georgakos, G., Sauzon, G., Hoemke, O., Beshenar, J., Mahrla, P., Just, K., Hober, P., Henzler, S., Schmitt-Landsiedel, D., Yakovleff, A., Klein, A., Knight, R.J., Acharya, P., Bonnardot, A., Buch, S., Sauer, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To meet the widely varying speed and power requirements of multifunctional mobile devices, an appropriate combination of technology features, circuit-level low-power techniques, and system architecture is implemented in a GSM/Edge baseband processor with multimedia and mixed-signal extensions. Power reduction techniques and performance requirements are derived from an analysis of relevant use cases and applications. The 44 mm 2 baseband processor is fabricated in a 90-nm low-power CMOS technology with triple-well option and dual-gate oxide core devices. The ARM926 core achieves a maximum clock frequency of 380 MHz at 1.4-V supply due to the usage of thin oxide (1.6 nm) devices. Power dissipation can be adapted to the performance requirements by means of combined voltage and frequency scaling to reduce active power consumption in medium-performance mode by 68%. To reduce leakage currents during standby mode, large SRAM blocks, nFET sleep transistors, and circuit components with relaxed performance requirements are implemented using devices with 2.2-nm gate oxide thickness
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2006.886528