A Wavelet-Based Algebraic Multigrid Preconditioning for Iterative Solvers in Finite-Element Analysis

A new approach for algebraic multigrid, based on wavelets, is presented as an efficient preconditioner for iterative solvers applied to the solution of linear systems issued from finite-element analysis. It can be applied to complex systems in which the coefficient matrix violates the M-matrix prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2007-04, Vol.43 (4), p.1553-1556
Hauptverfasser: Pereira, F.H., Palin, M.F., Verardi, S.L.L., Silva, V.C., Cardoso, J.R., Nabeta, S.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new approach for algebraic multigrid, based on wavelets, is presented as an efficient preconditioner for iterative solvers applied to the solution of linear systems issued from finite-element analysis. It can be applied to complex systems in which the coefficient matrix violates the M-matrix property, as those arising from ungauged edge-based AV finite-element formulation. When used as a preconditioner for the biconjugate gradient stabilized method it is shown that the proposed technique is more efficient than incomplete Cholesky preconditioner
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2007.892468