Adaptive Control of a Class of Nonaffine Systems Using Neural Networks

A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2007-07, Vol.18 (4), p.1149-1159
Hauptverfasser: Bong-Jun Yang, Calise, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1159
container_issue 4
container_start_page 1149
container_title IEEE transaction on neural networks and learning systems
container_volume 18
creator Bong-Jun Yang
Calise, A.J.
description A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.
doi_str_mv 10.1109/TNN.2007.899253
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880663508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4267725</ieee_id><sourcerecordid>880663508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mozl9nD4IUL546X9I0aY6jOBXGPOjOIWtfpNo1M2mV_fdmbCh4-j54n_fl8SHkksKYUlB3r_P5mAHIcaEUy7MDckIVpymAyg7jDDxPFWNyRE5DeAegPAdxTEZUClEIIU_IdFKbdd98YVK6rveuTZxNTFK2JoTtOHedsbbpMHnZhB5XIVmEpntL5jh408bov53_COfkyJo24MU-z8hiev9aPqaz54encjJLq4xnfcorJpkFYZRaqsLWJqcSJWWAJs_AKlMbIyosGFoluKpVvmUEINIKIaPZGbnd9a69-xww9HrVhArb1nTohqCLAoTIcigiefOPfHeD7-JzWlHGKJccInS3gyrvQvBo9do3K-M3moLeCtZRsN4K1jvB8eJ6XzssV1j_8XujEbjaAQ0i_q45E1LG-x_F_H3P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912214740</pqid></control><display><type>article</type><title>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bong-Jun Yang ; Calise, A.J.</creator><creatorcontrib>Bong-Jun Yang ; Calise, A.J.</creatorcontrib><description>A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2007.899253</identifier><identifier>PMID: 17668667</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Algorithms ; Computer Simulation ; Control design ; Control system synthesis ; Control systems ; Decision Support Techniques ; Derivatives ; Feedback ; Feedback linearization ; Mathematical analysis ; Models, Theoretical ; Network synthesis ; Neural networks ; Neural Networks (Computer) ; Neurocontrollers ; nonaffine systems ; Nonlinear Dynamics ; Nonlinear equations ; Open loop systems ; Origins ; Synthesis ; Tracking errors ; Uncertainty</subject><ispartof>IEEE transaction on neural networks and learning systems, 2007-07, Vol.18 (4), p.1149-1159</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</citedby><cites>FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4267725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4267725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17668667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bong-Jun Yang</creatorcontrib><creatorcontrib>Calise, A.J.</creatorcontrib><title>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Control design</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Decision Support Techniques</subject><subject>Derivatives</subject><subject>Feedback</subject><subject>Feedback linearization</subject><subject>Mathematical analysis</subject><subject>Models, Theoretical</subject><subject>Network synthesis</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurocontrollers</subject><subject>nonaffine systems</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear equations</subject><subject>Open loop systems</subject><subject>Origins</subject><subject>Synthesis</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkM9LwzAUx4Mozl9nD4IUL546X9I0aY6jOBXGPOjOIWtfpNo1M2mV_fdmbCh4-j54n_fl8SHkksKYUlB3r_P5mAHIcaEUy7MDckIVpymAyg7jDDxPFWNyRE5DeAegPAdxTEZUClEIIU_IdFKbdd98YVK6rveuTZxNTFK2JoTtOHedsbbpMHnZhB5XIVmEpntL5jh408bov53_COfkyJo24MU-z8hiev9aPqaz54encjJLq4xnfcorJpkFYZRaqsLWJqcSJWWAJs_AKlMbIyosGFoluKpVvmUEINIKIaPZGbnd9a69-xww9HrVhArb1nTohqCLAoTIcigiefOPfHeD7-JzWlHGKJccInS3gyrvQvBo9do3K-M3moLeCtZRsN4K1jvB8eJ6XzssV1j_8XujEbjaAQ0i_q45E1LG-x_F_H3P</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Bong-Jun Yang</creator><creator>Calise, A.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20070701</creationdate><title>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</title><author>Bong-Jun Yang ; Calise, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Control design</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Decision Support Techniques</topic><topic>Derivatives</topic><topic>Feedback</topic><topic>Feedback linearization</topic><topic>Mathematical analysis</topic><topic>Models, Theoretical</topic><topic>Network synthesis</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurocontrollers</topic><topic>nonaffine systems</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear equations</topic><topic>Open loop systems</topic><topic>Origins</topic><topic>Synthesis</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Bong-Jun Yang</creatorcontrib><creatorcontrib>Calise, A.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bong-Jun Yang</au><au>Calise, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>18</volume><issue>4</issue><spage>1149</spage><epage>1159</epage><pages>1149-1159</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17668667</pmid><doi>10.1109/TNN.2007.899253</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2007-07, Vol.18 (4), p.1149-1159
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_880663508
source IEEE Electronic Library (IEL)
subjects Adaptive control
Algorithms
Computer Simulation
Control design
Control system synthesis
Control systems
Decision Support Techniques
Derivatives
Feedback
Feedback linearization
Mathematical analysis
Models, Theoretical
Network synthesis
Neural networks
Neural Networks (Computer)
Neurocontrollers
nonaffine systems
Nonlinear Dynamics
Nonlinear equations
Open loop systems
Origins
Synthesis
Tracking errors
Uncertainty
title Adaptive Control of a Class of Nonaffine Systems Using Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Control%20of%20a%20Class%20of%20Nonaffine%20Systems%20Using%20Neural%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Bong-Jun%20Yang&rft.date=2007-07-01&rft.volume=18&rft.issue=4&rft.spage=1149&rft.epage=1159&rft.pages=1149-1159&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2007.899253&rft_dat=%3Cproquest_RIE%3E880663508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912214740&rft_id=info:pmid/17668667&rft_ieee_id=4267725&rfr_iscdi=true