Adaptive Control of a Class of Nonaffine Systems Using Neural Networks
A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions e...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2007-07, Vol.18 (4), p.1149-1159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1159 |
---|---|
container_issue | 4 |
container_start_page | 1149 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 18 |
creator | Bong-Jun Yang Calise, A.J. |
description | A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach. |
doi_str_mv | 10.1109/TNN.2007.899253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880663508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4267725</ieee_id><sourcerecordid>880663508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mozl9nD4IUL546X9I0aY6jOBXGPOjOIWtfpNo1M2mV_fdmbCh4-j54n_fl8SHkksKYUlB3r_P5mAHIcaEUy7MDckIVpymAyg7jDDxPFWNyRE5DeAegPAdxTEZUClEIIU_IdFKbdd98YVK6rveuTZxNTFK2JoTtOHedsbbpMHnZhB5XIVmEpntL5jh408bov53_COfkyJo24MU-z8hiev9aPqaz54encjJLq4xnfcorJpkFYZRaqsLWJqcSJWWAJs_AKlMbIyosGFoluKpVvmUEINIKIaPZGbnd9a69-xww9HrVhArb1nTohqCLAoTIcigiefOPfHeD7-JzWlHGKJccInS3gyrvQvBo9do3K-M3moLeCtZRsN4K1jvB8eJ6XzssV1j_8XujEbjaAQ0i_q45E1LG-x_F_H3P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912214740</pqid></control><display><type>article</type><title>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bong-Jun Yang ; Calise, A.J.</creator><creatorcontrib>Bong-Jun Yang ; Calise, A.J.</creatorcontrib><description>A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2007.899253</identifier><identifier>PMID: 17668667</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Algorithms ; Computer Simulation ; Control design ; Control system synthesis ; Control systems ; Decision Support Techniques ; Derivatives ; Feedback ; Feedback linearization ; Mathematical analysis ; Models, Theoretical ; Network synthesis ; Neural networks ; Neural Networks (Computer) ; Neurocontrollers ; nonaffine systems ; Nonlinear Dynamics ; Nonlinear equations ; Open loop systems ; Origins ; Synthesis ; Tracking errors ; Uncertainty</subject><ispartof>IEEE transaction on neural networks and learning systems, 2007-07, Vol.18 (4), p.1149-1159</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</citedby><cites>FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4267725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4267725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17668667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bong-Jun Yang</creatorcontrib><creatorcontrib>Calise, A.J.</creatorcontrib><title>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Control design</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Decision Support Techniques</subject><subject>Derivatives</subject><subject>Feedback</subject><subject>Feedback linearization</subject><subject>Mathematical analysis</subject><subject>Models, Theoretical</subject><subject>Network synthesis</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurocontrollers</subject><subject>nonaffine systems</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear equations</subject><subject>Open loop systems</subject><subject>Origins</subject><subject>Synthesis</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkM9LwzAUx4Mozl9nD4IUL546X9I0aY6jOBXGPOjOIWtfpNo1M2mV_fdmbCh4-j54n_fl8SHkksKYUlB3r_P5mAHIcaEUy7MDckIVpymAyg7jDDxPFWNyRE5DeAegPAdxTEZUClEIIU_IdFKbdd98YVK6rveuTZxNTFK2JoTtOHedsbbpMHnZhB5XIVmEpntL5jh408bov53_COfkyJo24MU-z8hiev9aPqaz54encjJLq4xnfcorJpkFYZRaqsLWJqcSJWWAJs_AKlMbIyosGFoluKpVvmUEINIKIaPZGbnd9a69-xww9HrVhArb1nTohqCLAoTIcigiefOPfHeD7-JzWlHGKJccInS3gyrvQvBo9do3K-M3moLeCtZRsN4K1jvB8eJ6XzssV1j_8XujEbjaAQ0i_q45E1LG-x_F_H3P</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Bong-Jun Yang</creator><creator>Calise, A.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20070701</creationdate><title>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</title><author>Bong-Jun Yang ; Calise, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4c272f06a99b98fda517e7120ea530f9adaa6ce82ef9649d95fda560ee1ce0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Control design</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Decision Support Techniques</topic><topic>Derivatives</topic><topic>Feedback</topic><topic>Feedback linearization</topic><topic>Mathematical analysis</topic><topic>Models, Theoretical</topic><topic>Network synthesis</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurocontrollers</topic><topic>nonaffine systems</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear equations</topic><topic>Open loop systems</topic><topic>Origins</topic><topic>Synthesis</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Bong-Jun Yang</creatorcontrib><creatorcontrib>Calise, A.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bong-Jun Yang</au><au>Calise, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Control of a Class of Nonaffine Systems Using Neural Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>18</volume><issue>4</issue><spage>1149</spage><epage>1159</epage><pages>1149-1159</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17668667</pmid><doi>10.1109/TNN.2007.899253</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2007-07, Vol.18 (4), p.1149-1159 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_880663508 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Algorithms Computer Simulation Control design Control system synthesis Control systems Decision Support Techniques Derivatives Feedback Feedback linearization Mathematical analysis Models, Theoretical Network synthesis Neural networks Neural Networks (Computer) Neurocontrollers nonaffine systems Nonlinear Dynamics Nonlinear equations Open loop systems Origins Synthesis Tracking errors Uncertainty |
title | Adaptive Control of a Class of Nonaffine Systems Using Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Control%20of%20a%20Class%20of%20Nonaffine%20Systems%20Using%20Neural%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Bong-Jun%20Yang&rft.date=2007-07-01&rft.volume=18&rft.issue=4&rft.spage=1149&rft.epage=1159&rft.pages=1149-1159&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2007.899253&rft_dat=%3Cproquest_RIE%3E880663508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912214740&rft_id=info:pmid/17668667&rft_ieee_id=4267725&rfr_iscdi=true |