Adaptive Control of a Class of Nonaffine Systems Using Neural Networks
A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions e...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2007-07, Vol.18 (4), p.1149-1159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A neural control synthesis method is considered for a class of nonaffine uncertain single-input-single-output (SISO) systems. The method eliminates a fixed-point assumption and does not assume boundedness on the time derivative of a control effectiveness term. One or the other of these assumptions exist in earlier papers on this subject. Using Lyapunov's direct method, it is shown that all the signals of the closed-loop system are uniformly ultimately bounded, and that the tracking error converges to an adjustable neighborhood of the origin. Simulation with a Van Der Pol equation with nonaffine control terms illustrates the approach. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2007.899253 |