A Generalized Associative Petri Net for Reasoning
Although Bayesian networks (BNs) are increasingly being used to solve real-world risk problems, their use is still constrained by the difficulty of constructing the node probability tables (NPTs). A key challenge is to construct relevant NPTs using the minimal amount of expert elicitation, recognizi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2007-09, Vol.19 (9), p.1241-1251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although Bayesian networks (BNs) are increasingly being used to solve real-world risk problems, their use is still constrained by the difficulty of constructing the node probability tables (NPTs). A key challenge is to construct relevant NPTs using the minimal amount of expert elicitation, recognizing that it is rarely cost effective to elicit complete sets of probability values. We describe a simple approach to defining NPTs for a large class of commonly occurring nodes (called ranked nodes). The approach is based on the doubly truncated normal distribution with a central tendency that is invariably a type of weighted function of the parent nodes. In extensive real-world case studies, we have found that this approach is sufficient for generating the NPTs of a very large class of nodes. We describe one such case study for validation purposes. The approach has been fully automated in a commercial tool, called AgenaRisk, and is thus accessible to all types of domain experts. We believe that this work represents a useful contribution to the BN research and technology, since its application makes the difference between being able to build realistic BN models and not. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2007.1068 |