Deformation Models for Image Recognition

We present the application of different nonlinear image deformation models to the task of image recognition. The deformation models are especially suited for local changes as they often occur in the presence of image object variability. We show that, among the discussed models, there is one approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2007-08, Vol.29 (8), p.1422-1435
Hauptverfasser: Keysers, D., Deselaers, T., Gollan, C., Ney, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the application of different nonlinear image deformation models to the task of image recognition. The deformation models are especially suited for local changes as they often occur in the presence of image object variability. We show that, among the discussed models, there is one approach that combines simplicity of implementation, low-computational complexity, and highly competitive performance across various real-world image recognition tasks. We show experimentally that the model performs very well for four different handwritten digit recognition tasks and for the classification of medical images, thus showing high generalization capacity. In particular, an error rate of 0.54 percent on the MNIST benchmark is achieved, as well as the lowest reported error rate, specifically 12.6 percent, in the 2005 international ImageCLEF evaluation of medical image specifically categorization.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2007.1153