Multi-hop wireless backhaul networks: a cross-layer design paradigm

Multihop wireless backhual networks are emerging as a cost-effective solution to provide ubiquitous and broadband access to meet the rapidly increasing demands of multimedia applications. In this paper, we consider the joint optimal design of routing, medium access control (MAC) scheduling and physi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2007-05, Vol.25 (4), p.738-748
Hauptverfasser: Min Cao, Xiaodong Wang, Seung-Jun Kim, Madihian, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multihop wireless backhual networks are emerging as a cost-effective solution to provide ubiquitous and broadband access to meet the rapidly increasing demands of multimedia applications. In this paper, we consider the joint optimal design of routing, medium access control (MAC) scheduling and physical layer resource allocation for such networks, where beamforming antenna arrays are equipped at the physical layer. The notion of transmission set (TS) is introduced to separate the physical layer operations from those at the upper layers; and a column generation approach is employed to efficiently identify the TSs. We then apply the dual decomposition method to decouple the routing and scheduling subproblems, which are performed at different layers and are coordinated by a pricing mechanism to achieve the optimal overall system objective. To efficiently support multimedia traffic, an admission control criterion is considered for the system objective. The performance of the proposed scheme is verified by simulation results, and the impact of the physical layer capabilities on the network performance is evaluated. We also discuss the implementation issues of the cross-layer scheme based on the IEEE 802.16 mesh mode.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2007.070510