Flexible Baseband Analog Circuits for Software-Defined Radio Front-Ends

This paper presents a novel approach to design a digitally programmable low pass filter (LPF) and variable gain amplifier (VGA) intended for a software-defined radio (SDR) front-end. These flexible analog circuits are driven by a network-on-chip (NoC) that is able to set performance parameters like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2007-07, Vol.42 (7), p.1501-1512
Hauptverfasser: Giannini, V., Craninckx, J., D'Amico, S., Baschirotto, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel approach to design a digitally programmable low pass filter (LPF) and variable gain amplifier (VGA) intended for a software-defined radio (SDR) front-end. These flexible analog circuits are driven by a network-on-chip (NoC) that is able to set performance parameters like cut-off frequency, selectivity, noise, and gain guaranteeing at any time a near-optimal power/performance trade-off. A design approach is proposed to tackle the challenges imposed by flexibility in analog design. A silicon prototype is realized in 0.13-mum CMOS technology with 1.2-V supply voltage to prove the validity of the proposed solution. The LPF provides a frequency tuning range between 0.35 MHz and 23.5 MHz with an adaptive integrated noise level between 85 muVrms and 163 muVrms whereby the power consumption conveniently varies from 0.72 mW to 21.6 mW according to the required performance. The VGA is made up of two cascaded gain stages and provides a gain range from about 0 dB to 39 dB with a reconfigurable power/bandwidth.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2007.899103