Lebesgue-Sampling-Based Optimal Control Problems With Time Aggregation
We formulate the Lebesgue-sampling-based optimal control problem. We show that the problem can be solved by the time aggregation approach in Markov decision processes (MDP) theory. Policy-iteration-based and reinforcement-learning-based methods are developed for the optimal policies. Both analytical...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2011-05, Vol.56 (5), p.1097-1109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1109 |
---|---|
container_issue | 5 |
container_start_page | 1097 |
container_title | IEEE transactions on automatic control |
container_volume | 56 |
creator | XU, Yan-Kai CAO, Xi-Ren |
description | We formulate the Lebesgue-sampling-based optimal control problem. We show that the problem can be solved by the time aggregation approach in Markov decision processes (MDP) theory. Policy-iteration-based and reinforcement-learning-based methods are developed for the optimal policies. Both analytical solutions and sample-path-based algorithms are given. Compared to the periodic-sampling scheme, the Lebesgue sampling scheme improves system performance. |
doi_str_mv | 10.1109/TAC.2010.2073610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880657662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5565410</ieee_id><sourcerecordid>880657662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a261604abd1d6e84fd8710f9be7ee8fdbcd721096b23d0bcfb360b626f7202b33</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbvgpcgiKfU_chuNscarAqFClY8LrvJbEzJR91NDv73bm3pwdMwzHs_5j2ErgmeEYKzh_U8n1EcNopTJgg-QRPCuYwpp-wUTTAmMs6oFOfowvtNWEWSkAlaLMGAr0aI33W7bequih-1hzJabYe61U2U993g-iZ6c71poPXRZz18Reu6hWheVQ4qPdR9d4nOrG48XB3mFH0sntb5S7xcPb_m82VcME6HWFNBBE60KUkpQCa2lCnBNjOQAkhbmqJMaUgjDGUlNoU1TGAjqLApxdQwNkX3e-7W9d8j-EG1tS-gaXQH_eiVlFjwVAgalLf_lJt-dF14TknBheSS7XB4Lypc770Dq7YupHY_imC1q1WFWtWuVnWoNVjuDlztC91Yp7ui9kcfTYjMsj_0zV5XA8DxzLngSaD8Aj5yfzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865685833</pqid></control><display><type>article</type><title>Lebesgue-Sampling-Based Optimal Control Problems With Time Aggregation</title><source>IEEE Electronic Library (IEL)</source><creator>XU, Yan-Kai ; CAO, Xi-Ren</creator><creatorcontrib>XU, Yan-Kai ; CAO, Xi-Ren</creatorcontrib><description>We formulate the Lebesgue-sampling-based optimal control problem. We show that the problem can be solved by the time aggregation approach in Markov decision processes (MDP) theory. Policy-iteration-based and reinforcement-learning-based methods are developed for the optimal policies. Both analytical solutions and sample-path-based algorithms are given. Compared to the periodic-sampling scheme, the Lebesgue sampling scheme improves system performance.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2073610</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Agglomeration ; Aggregation ; Algorithms ; Applied sciences ; Artificial intelligence ; Automatic control ; Boundary conditions ; Calculus of variations and optimal control ; Computer science; control theory; systems ; Cost function ; Decision theory. Utility theory ; Equations ; Exact sciences and technology ; Markov decision processes (MDPs) ; Markov processes ; Mathematical analysis ; Mathematical model ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Optimal control ; Optimization ; performance potentials ; Probability and statistics ; Probability theory and stochastic processes ; reinforcement learning ; Sampling ; Sciences and techniques of general use</subject><ispartof>IEEE transactions on automatic control, 2011-05, Vol.56 (5), p.1097-1109</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a261604abd1d6e84fd8710f9be7ee8fdbcd721096b23d0bcfb360b626f7202b33</citedby><cites>FETCH-LOGICAL-c352t-a261604abd1d6e84fd8710f9be7ee8fdbcd721096b23d0bcfb360b626f7202b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5565410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5565410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24189933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>XU, Yan-Kai</creatorcontrib><creatorcontrib>CAO, Xi-Ren</creatorcontrib><title>Lebesgue-Sampling-Based Optimal Control Problems With Time Aggregation</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We formulate the Lebesgue-sampling-based optimal control problem. We show that the problem can be solved by the time aggregation approach in Markov decision processes (MDP) theory. Policy-iteration-based and reinforcement-learning-based methods are developed for the optimal policies. Both analytical solutions and sample-path-based algorithms are given. Compared to the periodic-sampling scheme, the Lebesgue sampling scheme improves system performance.</description><subject>Agglomeration</subject><subject>Aggregation</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Automatic control</subject><subject>Boundary conditions</subject><subject>Calculus of variations and optimal control</subject><subject>Computer science; control theory; systems</subject><subject>Cost function</subject><subject>Decision theory. Utility theory</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Markov decision processes (MDPs)</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>performance potentials</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>reinforcement learning</subject><subject>Sampling</subject><subject>Sciences and techniques of general use</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFbvgpcgiKfU_chuNscarAqFClY8LrvJbEzJR91NDv73bm3pwdMwzHs_5j2ErgmeEYKzh_U8n1EcNopTJgg-QRPCuYwpp-wUTTAmMs6oFOfowvtNWEWSkAlaLMGAr0aI33W7bequih-1hzJabYe61U2U993g-iZ6c71poPXRZz18Reu6hWheVQ4qPdR9d4nOrG48XB3mFH0sntb5S7xcPb_m82VcME6HWFNBBE60KUkpQCa2lCnBNjOQAkhbmqJMaUgjDGUlNoU1TGAjqLApxdQwNkX3e-7W9d8j-EG1tS-gaXQH_eiVlFjwVAgalLf_lJt-dF14TknBheSS7XB4Lypc770Dq7YupHY_imC1q1WFWtWuVnWoNVjuDlztC91Yp7ui9kcfTYjMsj_0zV5XA8DxzLngSaD8Aj5yfzo</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>XU, Yan-Kai</creator><creator>CAO, Xi-Ren</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20110501</creationdate><title>Lebesgue-Sampling-Based Optimal Control Problems With Time Aggregation</title><author>XU, Yan-Kai ; CAO, Xi-Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a261604abd1d6e84fd8710f9be7ee8fdbcd721096b23d0bcfb360b626f7202b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agglomeration</topic><topic>Aggregation</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Automatic control</topic><topic>Boundary conditions</topic><topic>Calculus of variations and optimal control</topic><topic>Computer science; control theory; systems</topic><topic>Cost function</topic><topic>Decision theory. Utility theory</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Markov decision processes (MDPs)</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>performance potentials</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>reinforcement learning</topic><topic>Sampling</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, Yan-Kai</creatorcontrib><creatorcontrib>CAO, Xi-Ren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU, Yan-Kai</au><au>CAO, Xi-Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lebesgue-Sampling-Based Optimal Control Problems With Time Aggregation</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>56</volume><issue>5</issue><spage>1097</spage><epage>1109</epage><pages>1097-1109</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We formulate the Lebesgue-sampling-based optimal control problem. We show that the problem can be solved by the time aggregation approach in Markov decision processes (MDP) theory. Policy-iteration-based and reinforcement-learning-based methods are developed for the optimal policies. Both analytical solutions and sample-path-based algorithms are given. Compared to the periodic-sampling scheme, the Lebesgue sampling scheme improves system performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2073610</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2011-05, Vol.56 (5), p.1097-1109 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_880657662 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Aggregation Algorithms Applied sciences Artificial intelligence Automatic control Boundary conditions Calculus of variations and optimal control Computer science control theory systems Cost function Decision theory. Utility theory Equations Exact sciences and technology Markov decision processes (MDPs) Markov processes Mathematical analysis Mathematical model Mathematics Operational research and scientific management Operational research. Management science Optimal control Optimization performance potentials Probability and statistics Probability theory and stochastic processes reinforcement learning Sampling Sciences and techniques of general use |
title | Lebesgue-Sampling-Based Optimal Control Problems With Time Aggregation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lebesgue-Sampling-Based%20Optimal%20Control%20Problems%20With%20Time%20Aggregation&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=XU,%20Yan-Kai&rft.date=2011-05-01&rft.volume=56&rft.issue=5&rft.spage=1097&rft.epage=1109&rft.pages=1097-1109&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2073610&rft_dat=%3Cproquest_RIE%3E880657662%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865685833&rft_id=info:pmid/&rft_ieee_id=5565410&rfr_iscdi=true |