Lebesgue-Sampling-Based Optimal Control Problems With Time Aggregation

We formulate the Lebesgue-sampling-based optimal control problem. We show that the problem can be solved by the time aggregation approach in Markov decision processes (MDP) theory. Policy-iteration-based and reinforcement-learning-based methods are developed for the optimal policies. Both analytical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2011-05, Vol.56 (5), p.1097-1109
Hauptverfasser: XU, Yan-Kai, CAO, Xi-Ren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate the Lebesgue-sampling-based optimal control problem. We show that the problem can be solved by the time aggregation approach in Markov decision processes (MDP) theory. Policy-iteration-based and reinforcement-learning-based methods are developed for the optimal policies. Both analytical solutions and sample-path-based algorithms are given. Compared to the periodic-sampling scheme, the Lebesgue sampling scheme improves system performance.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2073610