A review of irradiation effects on LWR core internal materials – Neutron embrittlement

Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods not only ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Nucl. Mater 2011-05, Vol.412 (1), p.195-208
Hauptverfasser: Chopra, O.K., Rao, A.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods not only changes the microstructure and microchemistry of these steels, but also degrades their fracture properties. The existing data on irradiated austenitic SSs are reviewed to determine the effects of key parameters such as material type and condition and irradiation temperature, dose, and dose rate on neutron embrittlement. Differences in the radiation-induced degradation of fracture properties between LWR and fast-reactor irradiations are also discussed. The results are used to (a) define a threshold fluence above which irradiation effects on fracture toughness of the material are significant, (b) evaluate the potential of neutron embrittlement under LWR operating conditions, and (c) assess the potential effects of voids on fracture toughness.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2011.02.059