Numerical and experimental detection of concentrated damage in a parabolic arch by measured frequency variations

The dynamics of a parabolic arch is studied in its undamaged and damaged states. The damage consists of a notch that reduces the height of the cross section at a given abscissa. A damage identification technique, based on the minimization of an objective function measuring the differences between nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2011-04, Vol.17 (4), p.605-614
Hauptverfasser: Pau, A., Greco, A., Vestroni, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamics of a parabolic arch is studied in its undamaged and damaged states. The damage consists of a notch that reduces the height of the cross section at a given abscissa. A damage identification technique, based on the minimization of an objective function measuring the differences between numerical and experimental variations of natural frequencies for undamaged and damaged states, is used. The uniqueness of the solution in different damage configurations is investigated using pseudo-experimental data and the reliability of the identification procedure is assessed. The identification procedure is then applied to an experimental case, where frequencies are obtained by impulsive tests on a prototype arch. The minimum number of experimental data needed to identify damage parameters is defined and the sensitivity of the identification algorithm to different possible choices of sets of data is analyzed.
ISSN:1077-5463
1741-2986
DOI:10.1177/1077546310362861