Convergence analysis for the Cauchy problem of Laplace’s equation by a regularized method of fundamental solutions
In this paper, we consider the Cauchy problem of Laplace’s equation in the neighborhood of a circle. The method of fundamental solutions (MFS) combined with the discrete Tikhonov regularization is applied to obtain a regularized solution from noisy Cauchy data. Under the suitable choices of a regula...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2010-11, Vol.33 (4), p.491-510 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the Cauchy problem of Laplace’s equation in the neighborhood of a circle. The method of fundamental solutions (MFS) combined with the discrete Tikhonov regularization is applied to obtain a regularized solution from noisy Cauchy data. Under the suitable choices of a regularization parameter and an
a priori
assumption to the Cauchy data, we obtain a convergence result for the regularized solution. Numerical experiments are presented to show the effectiveness of the proposed method. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-009-9134-7 |