Convergence analysis for the Cauchy problem of Laplace’s equation by a regularized method of fundamental solutions

In this paper, we consider the Cauchy problem of Laplace’s equation in the neighborhood of a circle. The method of fundamental solutions (MFS) combined with the discrete Tikhonov regularization is applied to obtain a regularized solution from noisy Cauchy data. Under the suitable choices of a regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2010-11, Vol.33 (4), p.491-510
Hauptverfasser: Wei, T., Zhou, D. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the Cauchy problem of Laplace’s equation in the neighborhood of a circle. The method of fundamental solutions (MFS) combined with the discrete Tikhonov regularization is applied to obtain a regularized solution from noisy Cauchy data. Under the suitable choices of a regularization parameter and an a priori assumption to the Cauchy data, we obtain a convergence result for the regularized solution. Numerical experiments are presented to show the effectiveness of the proposed method.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-009-9134-7