A CramAr-Rao Bound Characterization of the EM-Algorithm Mean Speed of Convergence

This paper deals with the mean speed of convergence of the expectation-maximization (EM) algorithm. We show that the asymptotic behavior (in terms of the number of observations) of the EM algorithm can be characterized as a function of the Cramer-Rao bounds (CRBs) associated to the so-called incompl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2008-01, Vol.56 (6)
Hauptverfasser: Herzet, C, Ramon, V, Renaux, A, Vandendorpe, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the mean speed of convergence of the expectation-maximization (EM) algorithm. We show that the asymptotic behavior (in terms of the number of observations) of the EM algorithm can be characterized as a function of the Cramer-Rao bounds (CRBs) associated to the so-called incomplete and complete data sets defined within the EM-algorithm framework. We particularize our result to the case of a complete data set defined as the concatenation of the observation vector and a vector of nuisance parameters, independent of the parameter of interest. In this particular case, we show that the CRB associated to the complete data set is nothing but the well-known modified CRB. Finally, we show by simulation that the proposed expression enables to properly characterize the EM-algorithm mean speed of convergence from the CRB behavior when the size of the observation set is large enough.
ISSN:1053-587X
DOI:10.1109/TSP.2008.917024