Boron-Assisted Transformation to Rod-Like Graphitic Carbons from Multi-Walled Carbon Nanotubes in Boron-Mixed Multi-Walled Carbon Nanotube Solids
We produced boron-mixed multi-walled carbon nanotube solids (B-mixed MWCNT solids) by heating and pressing the powder of purified MWCNTs mixed with 1, 5, and 10 wt % boron in the temperature range 1400–1800 °C every 200 °C under a constant pressure of 20 MPa in vacuo, and investigated the influence...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2011-07, Vol.3 (7), p.2431-2439 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We produced boron-mixed multi-walled carbon nanotube solids (B-mixed MWCNT solids) by heating and pressing the powder of purified MWCNTs mixed with 1, 5, and 10 wt % boron in the temperature range 1400–1800 °C every 200 °C under a constant pressure of 20 MPa in vacuo, and investigated the influence of boron addition on nanotube structure and the mechanical and electrical properties of the resulting B-mixed MWCNT solids. The structure of the prepared material was characterized by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy-electron energy loss spectroscopy, Raman scattering spectroscopy, and X-ray diffraction, and their mechanical properties and conductivity were measured using a mechanical and Vickers indentation tester and an electric resistor, respectively. It is notable that part of the nanotubes in the B-mixed MWCNT solids solidified at 1800 °C had dramatically changed into rod-like graphitic carbons (RLGCs). The occupancy distribution of RLGCs increased with increasing boron contents. However, boron was not detected in the energy-loss near-edge structure spectrum of RLGCs. Furthermore, RLGCs were not observed in the boron-unmixed sample treated with the same solidified condition, indicating that adding boron causes a remarkable ability to transform the phase of MWCNT. Transformation from MWCNTs to RLGCs resulted in increased specific bending strength and modulus, Vickers hardness, and electrical conductivity of B-mixed MWCNT solids with increasing boron content and solidified temperature. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am200335n |