Use of female information in dairy cattle genomic breeding programs
Genomic selection has the potential to increase the accuracy of selection and, therefore, genetic gain, as well as reducing the rate of inbreeding, yet few studies have evaluated the potential benefit of the contribution of females in genomic selection programs. The objective of this study was to de...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2011-08, Vol.94 (8), p.4109-4118 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genomic selection has the potential to increase the accuracy of selection and, therefore, genetic gain, as well as reducing the rate of inbreeding, yet few studies have evaluated the potential benefit of the contribution of females in genomic selection programs. The objective of this study was to determine the effect on genetic gain, accuracy of selection, generation interval, and inbreeding, of including female genotypes in a genomic selection breeding program. A population of approximately 3,500 females and 500 males born annually was simulated and split into an elite and commercial tier representation of the Irish national herd. Several alternative breeding schemes were evaluated to quantify the potential benefit of female genomic information within dairy breeding schemes. Results showed that the inclusion of female phenotypic and genomic information can lead to a 3-fold increase in the rate of genetic gain compared with a traditional BLUP breeding program and decrease the generation interval of the males by 3.8 yr, while maintaining a reasonable rate of inbreeding. The accuracy of the selected males was increased by 73% in the final 3 yr of the genomic schemes compared with the traditional BLUP scheme. The results of this study have several implications for national breeding schemes. Although an investment in genotyping a large population of animals is required, these costs can be offset by the greater genetic gain achievable through the increased accuracy of selection and decreased generation intervals associated with genomic selection. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2010-4016 |