Cryptic Plasticity Underlies a Major Evolutionary Transition

The origin of eusociality is often regarded as a change of macroevolutionary proportions [1, 2]. Its hallmark is a reproductive division of labor between the members of a society: some individuals (“helpers” or “workers”) forfeit their own reproduction to rear offspring of others (“queens”). In the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2010-11, Vol.20 (22), p.2028-2031
Hauptverfasser: Field, Jeremy, Paxton, Robert J., Soro, Antonella, Bridge, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of eusociality is often regarded as a change of macroevolutionary proportions [1, 2]. Its hallmark is a reproductive division of labor between the members of a society: some individuals (“helpers” or “workers”) forfeit their own reproduction to rear offspring of others (“queens”). In the Hymenoptera (ants, bees, wasps), there have been many transitions in both directions between solitary nesting and sociality [2–5]. How have such transitions occurred? One possibility is that multiple transitions represent repeated evolutionary gains and losses of the traits underpinning sociality. A second possibility, however, is that once sociality has evolved, subsequent transitions represent selection at just one or a small number of loci controlling developmental switches between preexisting alternative phenotypes [2, 6]. We might then expect transitional populations that can express either sociality or solitary nesting, depending on environmental conditions. Here, we use field transplants to directly induce transitions in British and Irish populations of the sweat bee Halictus rubicundus. Individual variation in social phenotype was linked to time available for offspring production, and to the genetic benefits of sociality, suggesting that helping was not simply misplaced parental care [7]. We thereby demonstrate that sociality itself can be truly plastic in a hymenopteran. ► Transplanting sweat bees between field sites reveals cryptic social plasticity ► Social phenotype responds adaptively to environmental conditions ► Switching between phenotypes could help some sweat bees to accommodate global warming
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2010.10.020