Biochemical and Functional Evidence of p53 Homology Is Inconsistent with Molecular Phylogenetics for Distant Sequences

The tumor suppressor p53 is mutated in ~50% of all human cancer cases worldwide. It is commonly assumed that the phylogenetic history of this important tumor suppressor has been thoroughly studied; however, few detailed studies of the entire extended p53 protein family have been reported, and none c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular evolution 2008-07, Vol.67 (1), p.51-67
Hauptverfasser: Fernandes, Andrew D, Atchley, William R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tumor suppressor p53 is mutated in ~50% of all human cancer cases worldwide. It is commonly assumed that the phylogenetic history of this important tumor suppressor has been thoroughly studied; however, few detailed studies of the entire extended p53 protein family have been reported, and none comprehensively and simultaneously consider functional, molecular, and phylogenetic data. Herein we examine a diverse collection of reported p53-like protein sequences, including representatives from the arthropods, nematodes, and protists, with the goal of answering several important questions. First, what evidence supports these highly divergent proteins being true homologues to the p53 family? Second, is the inferred overall family phylogeny concordant with known structures and functions? Third, does the extended p53 family possess recognizable conserved sites outside of the within-chordate, highly-conserved DNA-binding domain? Our study shows that the biochemical and functional evidence of p53 homology for nematodes, arthropods, and protists is inconsistent with their implied phylogenetic relationship within the overall family. Although these divergent sequences are always reported as functionally similar to human p53, our results confirm and extend the hypothesis that p63 is a far more appropriate protein for comparison. Within these divergent sequences, we find minimal conservation within the DNA-binding domain, and no conservation elsewhere. Taken together, our findings suggest that these sequences are not bona fide homologues of the extended p53 family and provide baseline criteria for the future identification and characterization of distant p53-family homologues.
ISSN:0022-2844
1432-1432
DOI:10.1007/s00239-008-9124-2