Role of differential changes in sympathetic nerve activity in the preparatory adjustments of cardiovascular functions during freezing behaviour in rats

Freezing behaviour is associated with a distinct pattern of changes in cardiovascular function, which has been considered as a preparatory reflex for ‘fight or flight' behaviour. However, the detailed mechanisms underlying preparatory cardiovascular adjustments and their physiological implica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental physiology 2010-01, Vol.95 (1), p.56-60
Hauptverfasser: Miki, Kenju, Yoshimoto, Misa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Freezing behaviour is associated with a distinct pattern of changes in cardiovascular function, which has been considered as a preparatory reflex for ‘fight or flight' behaviour. However, the detailed mechanisms underlying preparatory cardiovascular adjustments and their physiological implications have received less attention. We studied responses in renal and lumbar sympathetic nerve activity and cardiovascular function during freezing behaviour in conscious rats, which was induced by exposure to loud white noise. Freezing behaviour was associated with regionally specific alterations in sympathetic nerve activity, in that renal sympathetic nerve activity increased while lumbar sympathetic nerve activity did not change. Moreover, freezing behaviour was associated with differential shifts in baroreflex control of sympathetic outflows, which could help to explain the selective responses in renal and lumbar sympathetic nerve activity during freezing behaviour. These differential changes in sympathetic outflows would result in a visceral vasoconstriction without having any impact on the skeletal muscle vasculature. These cardiovascular adjustments during freezing behaviour may help to explain the immediate and massive increase in muscular blood flow that occurs at the onset of fight or flight behaviour. It is hypothesized that central command originating from the defence area could somehow modulate separate baroreflex pathways, causing differential changes in sympathetic nerve activity to generate the preparatory cardiovascular adjustments during the freezing behaviour.
ISSN:0958-0670
1469-445X
DOI:10.1113/expphysiol.2009.050187