A two-step estimator for large approximate dynamic factor models based on Kalman filtering

This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large ( n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrics 2011-09, Vol.164 (1), p.188-205
Hauptverfasser: Doz, Catherine, Giannone, Domenico, Reichlin, Lucrezia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper shows consistency of a two-step estimation of the factors in a dynamic approximate factor model when the panel of time series is large ( n large). In the first step, the parameters of the model are estimated from an OLS on principal components. In the second step, the factors are estimated via the Kalman smoother. The analysis develops the theory for the estimator considered in Giannone et al. (2004) and Giannone et al. (2008) and for the many empirical papers using this framework for nowcasting.
ISSN:0304-4076
2225-1146
1872-6895
2225-1146
DOI:10.1016/j.jeconom.2011.02.012