Loss of Bcl-2 During the Senescence Exacerbates the Impaired Angiogenic Functions in Endothelial Cells by Deteriorating the Mitochondrial Redox State
Ageing is an important risk factor for ischemic cardiovascular diseases, although its underlying molecular mechanisms remain to be elucidated. Here, we report a crucial role of Bcl-2 in the impaired angiogenic functions in senescent endothelial cells (ECs) by modulating the mitochondrial redox state...
Gespeichert in:
Veröffentlicht in: | Hypertension (Dallas, Tex. 1979) Tex. 1979), 2011-08, Vol.58 (2), p.254-263 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ageing is an important risk factor for ischemic cardiovascular diseases, although its underlying molecular mechanisms remain to be elucidated. Here, we report a crucial role of Bcl-2 in the impaired angiogenic functions in senescent endothelial cells (ECs) by modulating the mitochondrial redox state. Cellular senescence impaired angiogenic functions in ECs without attenuating the mitogen-activated protein kinase or Akt signaling, and vascular endothelial growth factor receptor 2 or Tie-2 expressions. We identified that Bcl-2 expression was markedly reduced in 3 independent models for senescent ECs, and pharmacological inhibition, as well as small interfering RNA-mediated gene silencing of Bcl-2, significantly impaired the angiogenic functions in young ECs. Bcl-2 has an antioxidative role by locating the glutathione at mitochondria, and we found that mitochondrial oxidative stress was significantly augmented in senescent ECs, in association with reduced mitochondria-associated glutathione. Transfection of Bcl-2 in senescent ECs significantly reduced the mitochondrial oxidative stress, restored the mitochondrial membrane potential, and improved the angiogenic capacity. Furthermore, gene transfer of Bcl-2 using adenovirus significantly improved the in vivo angiogenesis in the Matrigel plugs implanted into aged mice, whereas the Bcl-2 inhibitor reduced the angiogenesis in the Matrigel plugs implanted into young mice. Together, Bcl-2 plays a crucial role in the regulation of the mitochondrial redox state in ECs, and, thus, loss of Bcl-2 during the senescence exacerbates the impaired angiogenesis by augmenting the mitochondrial oxidative stress. |
---|---|
ISSN: | 0194-911X 1524-4563 |
DOI: | 10.1161/HYPERTENSIONAHA.111.176701 |