Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs

In 2 simultaneous experiments (Exp. 1 and Exp. 2), the effects of benzoic acid (BA) and phytase (Phy) in low-P diets on bone metabolism, bone composition, and bone stability in growing and growing-finishing pigs were examined. Experiment 1 was conducted with 16 crossbred gilts in the BW range of 25...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2010-10, Vol.88 (10), p.3363-3371
Hauptverfasser: Bühler, K, Liesegang, A, Bucher, B, Wenk, C, Broz, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2 simultaneous experiments (Exp. 1 and Exp. 2), the effects of benzoic acid (BA) and phytase (Phy) in low-P diets on bone metabolism, bone composition, and bone stability in growing and growing-finishing pigs were examined. Experiment 1 was conducted with 16 crossbred gilts in the BW range of 25 to 66 kg of BW, whereas in Exp. 2, 32 crossbred gilts (25 to 108 kg of BW) were used. All pigs were individually housed in pens and restrictively fed 1 of 4 diets throughout the experiment. Total P content of the wheat-soybean diets was 4 g/kg (all values on an as-fed basis). The experimental diets were 1) unsupplemented control diet; 2) control diet with 0.5% BA; 3) Phy diet with 750 Phy units (FTU) of Phy/kg and no BA; and 4) PhyBA, control diet with 750 FTU of Phy/kg and 0.5% BA. Blood samples were taken at the beginning of the experiment, wk 3 (only for pigs in Exp. 1), wk 6, and before slaughter to determine P and Ca in serum and concentrations of total alkaline phosphatase, serum crosslaps (marker for bone resorption), and osteocalcin (marker for bone formation). Ash, P, and Ca contents of bones and bone stability were examined using the left metatarsal bones and tibia of the pigs after slaughter. Benzoic acid did not influence any of the blood variables (P > 0.09). The addition of Phy increased (P [less-than or equal to] 0.03) P concentration in serum from 2.71 ± 0.08 to 3.03 ± 0.07 mmol/L at wk 3 and content of serum crosslaps from 0.39 ± 0.02 to 0.45 ± 0.02 ng/mL at wk 6 and decreased (P < 0.05) osteocalcin at wk 6 by 160 ng/mL. No long-term effect of diets on serum mineral concentrations, alkaline phosphatase, and bone markers in serum could be detected. Benzoic acid negatively affected (P [less-than or equal to] 0.03) Ca content in bones and distal bone mineral density, especially in the younger pigs. In the control diet with 0.5% BA and the control diet with 750 FTU of Phy/kg and 0.5% BA, the CA content in bones and distal bone mineral density were reduced by 6 and 11%, respectively. Throughout the whole growing and finishing period, Phy increased (P [less-than or equal to] 0.02) ash, P, and Ca contents in bones by 29.4, 4.8, and 11.6 g/kg of DM, respectively. Bone mineral density and bone mineral content were greater in diets with Phy (P [less-than or equal to] 0.03), as well as breaking strength of tibia (+22%) and metatarsal bones (+27%; P < 0.01). The results of this study indicate that for a healthy skeleton, BA should not be used in low-P diets
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2009-1940