PTHrP Regulates Angiogenesis and Bone Resorption via VEGF Expression
Parathyroid hormone-related protein (PTHrP) is a key regulator of osteolytic metastasis of breast cancer (BC) cells, but its targets and mechanisms of action are not fully understood. This study investigated whether/how PTHrP (1-34) signaling regulates expression of vascular endothelial growth facto...
Gespeichert in:
Veröffentlicht in: | Anticancer research 2010-07, Vol.30 (7), p.2755-2767 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parathyroid hormone-related protein (PTHrP) is a key regulator of osteolytic metastasis of breast cancer (BC) cells, but its targets and mechanisms of action are not fully understood. This study investigated whether/how PTHrP (1-34) signaling regulates expression of vascular endothelial growth factor (VEGF) produced by BC cells.
A mouse model of bone metastasis was prepared by inoculating mice with tumour cell suspensions of the human BC cell line MDA-MB-231 via the left cardiac ventricle. VEGF expression was examined by Western blot and real-time RT-PCR analysis, as well as by confocal microscopy in the bone microenvironment.
PTHrP was expressed in cancer cells producing PTH/PTHrP receptor and VEGF that had invaded the bone marrow, and PTHrP was up-regulated VEGF in MDA-MB-231 in vitro. The culture medium conditioned by PTHrP-treated MDA-MB-231 cells stimulated angiogenesis and osteoclastogenesis compared with control medium, giving a response that was inhibited by VEGF-neutralizing antibody treatment. Inhibition of protein kinase C (PKC) prevented PTHrP-induced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and PTHrP-induced VEGF expression.
PTHrP plays an important role in modulating the angiogenic and bone osteolytic actions of VEGF through PKC-dependent activation of an ERK1/2 and p38 signaling pathway during bone metastasis by breast cancer cells. |
---|---|
ISSN: | 0250-7005 1791-7530 |