Circadian resonance in the development of two sympatric species of Camponotus ants

Circadian clocks provide adaptive advantage to their owners by timing their behavioural and physiological processes in accordance with the external environment. Here we report the results of our study aimed at investigating the effect of the interaction between circadian timing system and environmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of insect physiology 2010-11, Vol.56 (11), p.1611-1616
Hauptverfasser: Lone, Shahnaz Rahman, Ilangovan, Vinodh, Murugan, Madhuvika, Sharma, Vijay Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Circadian clocks provide adaptive advantage to their owners by timing their behavioural and physiological processes in accordance with the external environment. Here we report the results of our study aimed at investigating the effect of the interaction between circadian timing system and environmental light/dark (LD) cycles on pre-adult development time of two sympatric species of Componotus ants, the night active Componotus compressus, and the day active C. paria—both species develop in dark underground nests, under fairly constant conditions of humidity and temperature. We estimated pre-adult developmental durations in these ants under three different LD cycles ( T20 = 10 h of light and 10 h of darkness, T24 = 12 h of light and 12 h of darkness, and T28 = 14 h of light and 14 h of darkness). We find that both species exhibit significantly faster pre-adult development under T24 compared to T20 and T28. Given that faster development in insects is considered as an adaptive strategy these results can be taken to suggest that Camponotus ants accrue greater fitness advantage under T24 compared to T20 and T28 LD cycles, possibly due to “circadian resonance” between circadian timing system and environmental LD cycle. Thus our study reveals that boreal species of ants could serve as a case for the study of adaptive significance of circadian organization.
ISSN:0022-1910
1879-1611
DOI:10.1016/j.jinsphys.2010.05.023