Dietary tryptophan restriction in rats triggers astrocyte cytoskeletal hypertrophy in hippocampus and amygdala
We have previously reported that dietary tryptophan (TRP) restriction in a rat crucial postnatal developmental stage induces depression-like behavior and alters dendritic spine density in CA1 pyramidal neurons and granule cells of the hippocampus. Due to astrocyte involvement in critical brain mecha...
Gespeichert in:
Veröffentlicht in: | Neuroscience letters 2009-02, Vol.450 (3), p.242-245 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have previously reported that dietary tryptophan (TRP) restriction in a rat crucial postnatal developmental stage induces depression-like behavior and alters dendritic spine density in CA1 pyramidal neurons and granule cells of the hippocampus. Due to astrocyte involvement in critical brain mechanisms, it seems worth to investigate possible adaptive changes in the glial population with TRP restriction. Experimental rats were fed with low TRP diet (20% of TRP level of the laboratory rat chow) from postnatal days 30–60. Antibody against glial fibrillary acidic protein (GFAP), a principal intermediate filament in astrocytes, was used to evaluate cytoskeletal hypertrophy and glial proliferation. Our results showed an increase in size and branching of GFAP-immunoreactive (IR) cells in the dorsal hippocampus and amygdala, characteristics of an astrocytic activation. No significant differences were found regarding the number of GFAP-IR cells in both regions. These results indicate that dietary TRP restriction can induce astrocytic activation, hence, provide further evidences supporting the hypothesis that serotonin may also modulate glial morphology. |
---|---|
ISSN: | 0304-3940 1872-7972 |
DOI: | 10.1016/j.neulet.2008.12.007 |