Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging

Abstract Accurate assessment of tumor boundaries and recognition of occult disease are important oncologic principles in cancer surgeries. However, existing imaging modalities are not optimized for intraoperative cancer imaging applications. We developed a nanobubble (NB) contrast agent for cancer t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2010-03, Vol.31 (7), p.1716-1722
Hauptverfasser: Xu, Jeff S, Huang, Jiwei, Qin, Ruogu, Hinkle, George H, Povoski, Stephen P, Martin, Edward W, Xu, Ronald X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Accurate assessment of tumor boundaries and recognition of occult disease are important oncologic principles in cancer surgeries. However, existing imaging modalities are not optimized for intraoperative cancer imaging applications. We developed a nanobubble (NB) contrast agent for cancer targeting and dual-mode imaging using optical and ultrasound (US) modalities. The contrast agent was fabricated by encapsulating the Texas Red dye in poly (lactic-co-glycolic acid) (PLGA) NBs and conjugating NBs with cancer-targeting ligands. Both one-step and three-step cancer-targeting strategies were tested on the LS174T human colon cancer cell line. For the one-step process, NBs were conjugated with the humanized HuCC49ΔCH 2 antibody to target the over-expressed TAG-72 antigen. For the three-step process, cancer cells were targeted by successive application of the biotinylated HuCC49ΔCH 2 antibody, streptavidin, and the biotinylated NBs. Both one-step and three-step processes successfully targeted the cancer cells with high binding affinity. NB-assisted dual-mode imaging was demonstrated on a gelatin phantom that embedded multiple tumor simulators at different NB concentrations. Simultaneous fluorescence and US images were acquired for these tumor simulators and linear correlations were observed between the fluorescence/US intensities and the NB concentrations. Our research demonstrated the technical feasibility of using the dual-mode NB contrast agent for cancer targeting and simultaneous fluorescence/US imaging.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2009.11.052