Abnormal gait, due to inflammation but not nerve injury, reflects enhanced nociception in preclinical pain models

Abstract Validation of gait analysis has the potential to bridge the gap between data from animal pain models and clinical observations. The goal of these studies was to compare alterations in gait due to inflammation or nerve injury to traditional pain measurements in animals. Pharmacological exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2009-10, Vol.1295, p.89-98
Hauptverfasser: Piesla, Michael J, Leventhal, Liza, Strassle, Brian W, Harrison, James E, Cummons, Terri A, Lu, Peimin, Whiteside, Garth T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Validation of gait analysis has the potential to bridge the gap between data from animal pain models and clinical observations. The goal of these studies was to compare alterations in gait due to inflammation or nerve injury to traditional pain measurements in animals. Pharmacological experiments determined whether gait alterations were related to enhanced nociception, edema, or motor nerve dysfunction. Gait was analyzed using an automated system (DigiGait) after injection of an inflammatory agent (carrageenan; CARR or FCA; Freund's complete adjuvant) or nerve injury (axotomy; AXO, partial sciatic nerve ligation; PSNL, spinal nerve ligation; SNL or chronic constriction injury; CCI). All models caused significant alterations in gait and thermal (inflammatory) or mechanical (nerve injury) hyperalgesia. Both indomethacin and morphine were able to block or reverse thermal hyperalgesia and normalize gait in the CARR model. Indomethacin partially blocked and did not reverse paw edema, suggesting that gait alterations must be primarily driven by enhanced nociception. In nerve injury models, AXO, PSNL, CCI, and SNL caused changes to the largest number of gait indices with the rank order being AXO > PSNL = CCI > > SNL. Gabapentin and duloxetine reversed mechanical hyperalgesia but did not normalize gait in any nerve injury model. Collectively, these data suggest that pain is the primary driver of abnormal gait in models of inflammatory but not nerve injury-related pain and suggests that, in the latter, disruption in gait is due to perturbation to the motor system. Gait may therefore constitute an alternative and potentially clinically relevant measure of pain due to inflammation.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2009.07.091