Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts

Abstract Objective There is a great demand for dental implant surfaces to accelerate the process of peri-implant bone generation to reduce its healing time and enable early loading. To this end, an inverse correlation between the proliferation and functional maturation (differentiation) in osteoblas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2010-04, Vol.26 (4), p.275-287
Hauptverfasser: Hori, Norio, Iwasa, Fuminori, Ueno, Takeshi, Takeuchi, Kazuo, Tsukimura, Naoki, Yamada, Masahiro, Hattori, Masami, Yamamoto, Akiko, Ogawa, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Objective There is a great demand for dental implant surfaces to accelerate the process of peri-implant bone generation to reduce its healing time and enable early loading. To this end, an inverse correlation between the proliferation and functional maturation (differentiation) in osteoblasts presents a challenge for the rapid generation of greater amounts of bone. For instance, osteoblasts exhibit faster differentiation but slower proliferation on micro-roughened titanium surfaces. Using a unique micro-nano-hierarchical topography of TiO2 that mimics biomineralized matrices, this study demonstrates that this challenge can be overcome without the use of biological agents. Methods Titanium disks of grade 2 commercially pure titanium were prepared by machining (smooth surface). To create a microtexture with peaks and valleys (micropit surface), titanium disks were acid-etched. To create 200-nm TiO2 nanonodules within the micropits (nanonodule-in-micropit surface), TiO2 was sputter-deposited onto the acid-etched surface. Rat bone marrow-derived osteoblasts and NIH3T3 fibroblasts were cultured on machined smooth, micropit, and nanonodule-in-micropit surfaces. Results Despite the substantially increased surface roughness, the addition of 200-nm nanonodules to micropits increased osteoblast proliferation while enhancing their functional differentiation. In contrast, this nanonodule-in-micropit surface decreased proliferation and function in fibroblasts. Significance The data suggest the establishment of cell-selectively functionalized nano-in-micro smart titanium surfaces that involve a regulatory effect on osteoblast proliferation, abrogating the inhibitory mechanism on the micropitted surface, while enhancing their functional differentiation. Biomimetic and controllable nature of this nanonodules-in-micropits surface may offer a novel micro-to-nanoscale hierarchical platform to biologically optimize nanofeatures of biomaterials. Particularly, this micro-nano-hybrid surface may be an effective approach to improve current dental implant surfaces for accelerated bone integration.
ISSN:0109-5641
1879-0097
DOI:10.1016/j.dental.2009.11.077