Combined impedance spectroscopy and Fourier domain optical coherence tomography to monitor cells in three-dimensional structures
To assess non-invasively and in real time the three- dimensional organization of cells within porous matrices by combining Fourier Domain Optical Coherence Tomography (FDOCT) and Impedance Spectroscopy (IS). Broadband interferences resulting from the recombination of in-depth light scattering events...
Gespeichert in:
Veröffentlicht in: | International journal of artificial organs 2010-04, Vol.33 (4), p.238-243 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To assess non-invasively and in real time the three- dimensional organization of cells within porous matrices by combining Fourier Domain Optical Coherence Tomography (FDOCT) and Impedance Spectroscopy (IS).
Broadband interferences resulting from the recombination of in-depth light scattering events within the sample and light from a reference arm are measured as a modulation of the spectrum generated by a superluminescent laser diode (lambdao = 930nm, FWHM 90nm). Fourier transform allows in-depth localization of the scatterers, and the 3D microstructure of the sample is reconstructed by raster scanning. Simultaneously impedance spectroscopy is performed with a dielectric probe connected to an impedance analyzer to gather additional cellular information, and synchronized with FDOCT measurements.
A combined IS-FDOCT system allowing an axial resolution of 5 micrometer in tissues and impedance measurements over the range 20MHz-1GHz has been developed. Alginate matrices have been characterized in terms of microstructure and impedance. Matrices seeded with adipose-derived stem cells have been monitored without the use of labeling agent.
We have developed a multimodality system that will be instrumental to non-invasively monitor changes in total cell volume fraction and infer cell-specific dielectric properties in 3D structure. |
---|---|
ISSN: | 0391-3988 1724-6040 |
DOI: | 10.1177/039139881003300408 |