Detection of the Ischemic Penumbra Using pH-Weighted MRI

The classic definition of the ischemic penumbra is a hypoperfused region in which metabolism is impaired, but still sufficient to maintain cellular polarization. Perfusion- and diffusion-weighted MRI (PWI, DWI) can identify regions of reduced perfusion and cellular depolarization, respectively, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2007-06, Vol.27 (6), p.1129-1136
Hauptverfasser: Sun, Phillip Zhe, Zhou, Jinyuan, Sun, Weiyun, Huang, Judy, van Zijl, Peter CM
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classic definition of the ischemic penumbra is a hypoperfused region in which metabolism is impaired, but still sufficient to maintain cellular polarization. Perfusion- and diffusion-weighted MRI (PWI, DWI) can identify regions of reduced perfusion and cellular depolarization, respectively, but it often remains unclear whether a PWI—DWI mismatch corresponds to benign oligemia or a true penumbra. We hypothesized that pH-weighted MRI (pHWI) can subdivide the PWI—DWI mismatch into these regions. Twenty-one rats underwent permanent middle cerebral artery occlusion and ischemic evolution over the first 3.5 h post-occlusion was studied using multiparametric MRI. End point was the stroke area defined by T2-hyperintensity at 24 h. In the acute phase, areas of reduced pH were always larger than or equal to DWI deficits and smaller than or equal to PWI deficits. Group analysis showed that pHWI deficits during this phase coincided with the resulting infarct area at endpoint. Final infarcts were smaller than PWI deficits (range 65% to 90%, depending on the severity of the occlusion) and much larger than acute DWI deficits. These data suggest that the outer boundary of the hypoperfused area showing a decrease in pH without DWI abnormality may correspond to the outer boundary of the ischemic penumbra, while the hypoperfused region at normal pH may correspond to benign oligemia. These first results show that pHWI can provide information complementary to PWI and DWI in the delineation of ischemic tissue.
ISSN:0271-678X
1559-7016
DOI:10.1038/sj.jcbfm.9600424