Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide
Fibroblast growth factor receptors (FGFRs), overexpressed on the surface of a variety of tumor cells and on tumor neovasculature in situ, are potential targets for tumor- and vascular-targeting therapy. This study aimed to develop a FGFR-mediated drug delivery system to target chemotherapeutic agent...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2010-07, Vol.145 (1), p.17-25 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fibroblast growth factor receptors (FGFRs), overexpressed on the surface of a variety of tumor cells and on tumor neovasculature
in situ, are potential targets for tumor- and vascular-targeting therapy. This study aimed to develop a FGFR-mediated drug delivery system to target chemotherapeutic agents to FGFR-overexpressed tumor cells and tumor neovasculature endothelial cells
in vitro and
in vivo. Here we designed a truncated human basic fibroblast growth factor peptide (tbFGF), which was attached to the surface of cationic liposomal doxorubicin (LPs-DOX) and paclitaxel (LPs-PTX)
via electrostatic force. Then we characterized the tbFGF-modified liposome (tbFGF-LPs) and examined internalization of doxorubicin in tumor cells (TRAMP-C1, B16) and HUVEC cells
in vitro.
In vivo, we evaluated the biodistribution and antitumor efficacy of tbFGF-LPs-DOX and tbFGF-LPs-PTX in C57BL/6
J mice bearing TRAMP-C1 prostate carcinoma and B16 melanoma, respectively. The tbFGF-LPs-DOX significantly improved the uptake of doxorubicin in TRAMP-C1, B16 and HUVEC cells, respectively. Biodistribution study in B16 tumor-bearing mice showed that tbFGF-LPs-PTX achieved 7.1-fold (72.827
±
7.321
mgh/L
vs 10.292
±
0.775
mgh/L, mean
±
SD,
P
<
0.01) accumulation of paclitaxel in tumor tissue than those of free paclitaxel. More importantly, treatment of tumor-bearing mice with tbFGF-LPs-DOX and tbFGF-LPs-PTX showed the significant inhibition in tumor growth and improvement in survival rate as compared with mice treated with free and liposomal drugs in TRAMP-C1 and B16 tumor models, respectively. Furthermore, repeated intravenous administration of tbFGF-LPs-DOX/PTX did not induce anti-bFGF antibodies. These results suggested that this FGFR-mediated drug delivery system may provide a new treatment strategy for tumors which overexpress FGFRs.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2010.03.007 |