Chylomicrons combined with endotoxin moderate microvascular permeability
Triglyceride-rich lipoprotein-bound endotoxin (CM-LPS) inhibits the host innate immune response to sepsis by attenuating the hepatocellular response to pro-inflammatory cytokine stimulation. This ‘cytokine tolerance’ in hepatocytes is a transient, receptor-dependent process that correlates with inte...
Gespeichert in:
Veröffentlicht in: | Innate immunity (London, England) England), 2011-06, Vol.17 (3), p.283-292 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Triglyceride-rich lipoprotein-bound endotoxin (CM-LPS) inhibits the host innate immune response to sepsis by attenuating the hepatocellular response to pro-inflammatory cytokine stimulation. This ‘cytokine tolerance’ in hepatocytes is a transient, receptor-dependent process that correlates with internalization of CM-LPS via low density lipoprotein (LDL) receptors. Since endothelial cells are integral to the immune response and similarly express LDL receptors, we hypothesized that CM-LPS could be internalized and ultimately attenuate the deleterious effects of pro-inflammatory molecules like tumor necrosis factor-α (TNF-α) and platelet activating factor (PAF) on endothelial permeability. Here, we show that CM-LPS complexes induce cytokine tolerance in endothelial cells. In rats, TNF-α increased hydraulic conductivity 2.5-fold over baseline and PAF increased it 5-fold; but, pretreatment with CM-LPS or an attenuated analog (CM-LPS*) inhibited these changes. Nuclear/cytoplasmic levels of p65 were reduced after TNF-α-stimulation in endothelial cell monolayers pretreated with CM-LPS, a finding consistent with inhibition of nuclear factor (NF)-κB translocation. Also consistent with inhibition was stabilized intercellular adhesion, as illustrated with antibody to VE-cadherin using confocal microscopy. These results provide additional support for the integral role of lipoproteins in the innate immune response to infection and lend further credence to developing lipid-based therapy for Gram-negative sepsis. |
---|---|
ISSN: | 1753-4259 1753-4267 |
DOI: | 10.1177/1753425910369849 |