Nuisance cyanobacteria in an urbanized impoundment: interacting internal phosphorus loading, nitrogen metabolism, and polymixis
Severe nuisance blooms of cyanobacteria, mainly Aphanizomenon and Microcystis, historically have plagued polymictic Ford Lake, one of the most productive warm-water sport fishing lakes in Michigan, U.S.A. Biomass development in the lake is known to be limited by phosphorus. Alternative theories ascr...
Gespeichert in:
Veröffentlicht in: | Hydrobiologia 2011-02, Vol.661 (1), p.277-287 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Severe nuisance blooms of cyanobacteria, mainly Aphanizomenon and Microcystis, historically have plagued polymictic Ford Lake, one of the most productive warm-water sport fishing lakes in Michigan, U.S.A. Biomass development in the lake is known to be limited by phosphorus. Alternative theories ascribed nuisance conditions either to allochthonous inputs or to internal loading of phosphorus from anoxic sediments. From 2003 to 2009, there was a strong linear relationship between allochthonous total phosphorus income and phosphorus retained within the basin. The relationship had a negative intercept, implying negative retention, or positive export, of phosphorus from the lake from May to September. Mass balance calculations at lake inlet and outlet were consistent with rates of sedimentary phosphorus accumulation measured from sediment cores. Release rates of soluble reactive phosphorus from anoxic sediments were half that of allochthonous inputs. However, severe declines in nitrogen to phosphorus ratio developed in the anoxic, nitrate-poor hypolimnion because accumulation of ammonium was only tenfold that of phosphate. The result was a steep decline in ratio of total nitrogen to total phosphorus during July and August throughout the lake after episodic mixing events, followed by and coinciding with development of heterocystous Aphanizomenon populations. Lake sediment composition determined by X-ray fluorescence in addition to results of sediment core experiments indicates that phosphorus release is governed by an iron trap mechanism such that phosphate and iron are released only when both oxygen and nitrate are depleted. |
---|---|
ISSN: | 0018-8158 1573-5117 |
DOI: | 10.1007/s10750-010-0535-x |