A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories
Abstract This article introduces a method and step-by-step instructions for the design of a low-cost, flexible electrogoniometer, suitable for kinesiology, rehabilitation, and biometric applications. Two unidirectional flexible sensors are placed back-to-back, and a multivariate linear regression mo...
Gespeichert in:
Veröffentlicht in: | Medical engineering & physics 2011-06, Vol.33 (5), p.546-552 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This article introduces a method and step-by-step instructions for the design of a low-cost, flexible electrogoniometer, suitable for kinesiology, rehabilitation, and biometric applications. Two unidirectional flexible sensors are placed back-to-back, and a multivariate linear regression model was used to combine measurements from the two sensors. Following a short calibration procedure, the electrogoniometer can be reliably used for measurement of flexion/extension angles of various hinge joints. The performance of the goniometer has been tested on a population of 21 healthy subjects performing flexion/extension of index finger, wrist and elbow. The proposed device achieves the quality of joint angle measurements comparable to that of commercial electrogoniometers, while having a significantly higher durability-to-cost ratio. |
---|---|
ISSN: | 1350-4533 1873-4030 |
DOI: | 10.1016/j.medengphy.2010.12.008 |