Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway

The cytoplasmic helicase protein RIG-I (retinoic acid-inducible gene I) and downstream signaling molecules, MAVS (mitochondrial antiviral signaling protein), TRAF3 (TNF-receptor-associated factor 3) and TBK1 (TANK-binding kinase 1), have significant roles in the recognition of cytoplasmic 5′-triphos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish & shellfish immunology 2011-04, Vol.30 (4), p.1159-1169
Hauptverfasser: Feng, Hong, Liu, Hong, Kong, Renqiu, Wang, Lu, Wang, Yaping, Hu, Wei, Guo, Qionglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cytoplasmic helicase protein RIG-I (retinoic acid-inducible gene I) and downstream signaling molecules, MAVS (mitochondrial antiviral signaling protein), TRAF3 (TNF-receptor-associated factor 3) and TBK1 (TANK-binding kinase 1), have significant roles in the recognition of cytoplasmic 5′-triphosphate ssRNA and short dsRNA, and phosphorylation of IRF-3 (interferon regulatory factor 3) and IRF-7 which is responsible for the induction of type I interferons (IFN). In the present study, the full-length cDNAs of RIG-I, MAVS, TRAF3 and TBK1 were cloned and identified in common carp ( Cyprinus carpio L.). The deduced protein of carp RIG-I is of 946 aa (amino acids), consisting of two CARDs (caspase-recruitment domain), a DEXDc (DExD/H box-containing domain), a HELICc (helicase superfamily c-terminal domain) and a RD (regulatory domain). Carp MAVS is of 585 aa, containing a CARD, a proline-rich region and a TM (transmembrane domain). Carp TRAF3 encodes a protein of 573 aa, including a RING (really interesting new gene), two TRAF-type zinc fingers, a coiled coil and a MATH-TRAF3 (meprin and TRAF homology) domain. Carp TBK1 is of 727 aa and contains a S_TKc domain (Serine/Threonine protein kinases, catalytic domain). Carp RIG-I, MAVS, TRAF3 and TBK1 mRNAs are ubiquitously expressed in all tissues examined. In response to SVCV infection, carp RIG-I and MAVS mRNAs were up-regulated at different levels in spleen, head kidney and intestine tissues at different time points. Similarly, both carp IRF-3 and IRF-7 mRNAs were significantly up-regulated in the detected tissues. Especially in intestine, the IRF-3 and IRF-7 mRNAs of carp increased and reached 25.3-fold (at 3 dpi) and 224.7-fold (at 5 dpi). Noteworthily, a significant growth of carp TRAF3 and TBK1 mRNA was also mainly found in intestine (7.0-fold and 11.3-fold at 5 dpi, respectively). These data implied that the expression profiles of IRF-3/-7 mRNAs in carp correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK, and carp RIG-I and MAVS may be involved in antiviral responses through the RIG-I viral recognition signaling pathway in a TRAF3/TBK1-dependent manner.
ISSN:1050-4648
1095-9947
DOI:10.1016/j.fsi.2011.03.002