Secular geomagnetic variations and volcanic pulses in the Permian-Triassic traps of the Norilsk and Maimecha-Kotui provinces

Detailed paleomagnetic studies have shown that the effusive Permian-Triassic traps in the Kotui River valley were formed as the result of volcanic activity, which occurred in the form of volcanic pulses and individual eruptions with net duration of at most 7000–8000 years, excluding the periods of v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya, Physics of the Solid Earth Physics of the Solid Earth, 2011-05, Vol.47 (5), p.402-417
Hauptverfasser: Pavlov, V. E., Fluteau, F., Veselovskiy, R. V., Fetisova, A. M., Latyshev, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detailed paleomagnetic studies have shown that the effusive Permian-Triassic traps in the Kotui River valley were formed as the result of volcanic activity, which occurred in the form of volcanic pulses and individual eruptions with net duration of at most 7000–8000 years, excluding the periods of volcanic quiescence. According to the analysis of the paleomagnetic data earlier obtained by Heunemann and his coauthors [2004b] on the Abagalakh and Listvyanka sections in the Norilsk region, those geological units were formed during 25 volcanic pulses and separate eruptions, which all lasted up to 8000 years altogether, whereas the total time of formation (including the periods of volcanic quiescence) exceeded 10000–100000 years for the Norilsk section and was probably a bit shorter for the Kotui section. Comparison of the positions of virtual geomagnetic poles calculated for the Norilsk and the Kotui sections provides no grounds to suggest that these sections were formed at different geological times. The scatter in the positions of the virtual geomagnetic poles (VGP) for the directional groups and individual directions (58 altogether) jointly for the two sections (more than 160 lava flows) indicates that the secular geomagnetic variations at the Permian-Triassic boundary had similar amplitudes to those that occurred in the past 5 Ma.
ISSN:1069-3513
1555-6506
DOI:10.1134/S1069351311040070