Computational study on aerodynamic mitigation of wind-induced, large-amplitude vibrations of stay cables with strakes
Modifications of circular cylinder surfaces, such as strakes and helical wires, effectively mitigate Kármán vortex-induced vibrations normal to flow and have been applied to the reduction of large-amplitude vibrations of stay cables in bridges, which occur under wind oblique to a cable with or witho...
Gespeichert in:
Veröffentlicht in: | Journal of wind engineering and industrial aerodynamics 2011-04, Vol.99 (4), p.389-399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modifications of circular cylinder surfaces, such as strakes and helical wires, effectively mitigate Kármán vortex-induced vibrations normal to flow and have been applied to the reduction of large-amplitude vibrations of stay cables in bridges, which occur under wind oblique to a cable with or without rainfall. This aerodynamic control method cannot be fully effective without understanding the behavior of the flow around and the associated forces on oblique cables. To address this issue, flow around a yawed cylinder with various strake patterns was studied using three-dimensional detached eddy simulation (DES) at Reynolds number of 1.4×10
5. Results demonstrated that strake patterns strongly influence the development of flow structures around a yawed cylinder and therefore the associated forces on the cylinder. The results suggest that particular strake patterns can mitigate large-amplitude and low-frequency vibrations of stay cables induced by oblique wind. |
---|---|
ISSN: | 0167-6105 1872-8197 |
DOI: | 10.1016/j.jweia.2011.01.001 |