Evidence of disrupted functional connectivity in the brain after combat-related blast injury

Non-impact blast-related mild traumatic brain injury (mTBI) appears to be present in soldiers returning from deployments to Afghanistan and Iraq. Although mTBI typically results in cognitive deficits that last less than a month, there is evidence that disrupted coordination of brain activity can per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2011, Vol.54, p.S21-S29
Hauptverfasser: Sponheim, Scott R., McGuire, Kathryn A., Kang, Seung Suk, Davenport, Nicholas D., Aviyente, Selin, Bernat, Edward M., Lim, Kelvin O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-impact blast-related mild traumatic brain injury (mTBI) appears to be present in soldiers returning from deployments to Afghanistan and Iraq. Although mTBI typically results in cognitive deficits that last less than a month, there is evidence that disrupted coordination of brain activity can persist for at least several months following injury ( Thatcher et al., 1989, 2001). In the present study we examined whether neural communication may be affected in soldiers months after blast-related mTBI, and whether coordination of neural function is associated with underlying white matter integrity. The investigation included an application of a new time–frequency based method for measuring electroencephalogram (EEG) phase synchronization ( Aviyente et al., 2010) as well as fractional anisotropy measures of axonal tracts derived from diffusion tensor imaging (DTI). Nine soldiers who incurred a blast-related mTBI during deployments to Afghanistan or Iraq were compared with eight demographically similar control subjects. Despite an absence of cognitive deficits, the blast-related mTBI group exhibited diminished EEG phase synchrony of lateral frontal sites with contralateral frontal brain regions suggesting diminished interhemispheric coordination of brain activity as a result of blast injury. For blast injured (i.e., blast-related mTBI) soldiers we found that EEG phase synchrony was associated with the structural integrity of white matter tracts of the frontal lobe (left anterior thalamic radiations and the forceps minor including the anterior corpus callosum). Analyses revealed that diminished EEG phase synchrony was not the consequence of combat-stress symptoms (e.g., post-traumatic stress and depression) and commonly prescribed medications. Results provide evidence for poor coordination of frontal neural function after blast injury that may be the consequence of damaged anterior white matter tracts. ► Soldiers with blast-related mild TBI had low EEG phase synchrony over frontal lobes. ► EEG synchrony was related to structural integrity of frontal lobe white matter tracts. ► Low EEG synchrony was not due to combat-stress symptoms or medications. ► Poor coordination of neural function post-blast may relate to white matter damage.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2010.09.007