Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi
Fenpropimorph and fenhexamid are sterol biosynthesis inhibitor (SBI) molecules widely used to control diseases in agriculture. Both molecules, at increasing concentrations, have been shown to impact on the non-target arbuscular mycorrhizal (AM) fungi. Root colonization, spore production and mycelium...
Gespeichert in:
Veröffentlicht in: | Mycorrhiza 2011-07, Vol.21 (5), p.363-374 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fenpropimorph and fenhexamid are sterol biosynthesis inhibitor (SBI) molecules widely used to control diseases in agriculture. Both molecules, at increasing concentrations, have been shown to impact on the non-target arbuscular mycorrhizal (AM) fungi. Root colonization, spore production and mycelium architecture, including the branched absorbing structures which are thought to be involved in phosphorus (P) uptake, were affected. In the present study, we investigated the capacity of
Glomus
sp. MUCL 43204 to take up, transfer and translocate labelled P to
Medicago truncatula
in the presence of these SBI molecules. We used a strict in vitro cultivation system associating an autotrophic plant of
M. truncatula
with the AM fungus. In addition, the effects of both SBI molecules on the proportion of hyphae with alkaline phosphatases (ALP), succinate dehydrogenase (SDH) activity and on the expression of the mycorrhiza-specific plant phosphate transporter MtPT4 gene were examined. We demonstrated that the two SBI molecules impacted the AM fungus. This was particularly evidenced for fenpropimorph. A decrease in P transport and ALP and SDH activities associated with the extraradical mycelium and
MtPT4
expression level was noted. These three factors were closely related to the development of the AM fungus, suggesting a direct impact not only on the AM fungal growth but also on the physiology and metabolic activities of the AM fungus. These results further emphasized the interest on the autotrophic in vitro culture system as an alternative to pot experiments to investigate the mechanisms behind the impact of disease control molecules on the non-target AM fungal symbionts. |
---|---|
ISSN: | 0940-6360 1432-1890 |
DOI: | 10.1007/s00572-010-0344-0 |