Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy

Humus forms may be the first tool to assess qualitatively organic matter turnover in soils; as such they should be related to the stocks of organic C a soil can store, to the characteristics of organic matter that affect its stability and, more generally, to the factors of soil formation. In this wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology and fertility of soils 2011-07, Vol.47 (5), p.555-566
Hauptverfasser: Bonifacio, Eleonora, Falsone, Gloria, Petrillo, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humus forms may be the first tool to assess qualitatively organic matter turnover in soils; as such they should be related to the stocks of organic C a soil can store, to the characteristics of organic matter that affect its stability and, more generally, to the factors of soil formation. In this work, we tested these hypotheses in 27 forest soils of northwestern Italy. Site variables representing the pedogenic factors allowed classifying the plots into three clusters, which were significantly different for soil and humus types. The average stocks of organic C in the humic episolum (organic and top mineral horizons) ranged from 2.7 kg m −2 in Eumulls to 9.5 kg m −2 in Amphimulls. A clear trend in C stocks was visible and related both to the increasing presence of organic layers where the environmental conditions do not favour a rapid turnover of organic matter and to the good mixing of organics and minerals in “bio-macrostructured” A horizons. The characteristics of organic matter were also linked to humus forms: The proportion of humified complex substances was the highest in the most active forms, and conversely, non-humified extracted substances formed a considerable part of organic matter only where the environmental conditions limit organic matter degradation. Humus forms seem therefore to reflect several mechanisms of organic matter stabilisation and are clearly related to the capacity of the soil to store C.
ISSN:0178-2762
1432-0789
DOI:10.1007/s00374-011-0568-y