The Protective Effect of Ceramide in Immature Rat Brain Hypoxia—Ischemia Involves Up-Regulation of BCL-2 and Reduction of TUNEL-Positive Cells

Preconditioning brain with tumor necrosis factor alpha (TNF-α) can induce tolerance to experimental hypoxia and stroke and ceramide is a downstream messenger in the TNF-α signaling pathway. A hypoxic-ischemic (HI) insult in the immature rat injures brain primarily through apoptosis. Apoptosis is reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2001-01, Vol.21 (1), p.34-40
Hauptverfasser: Chen, Yong, Ginis, Irene, Hallenbeck, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preconditioning brain with tumor necrosis factor alpha (TNF-α) can induce tolerance to experimental hypoxia and stroke and ceramide is a downstream messenger in the TNF-α signaling pathway. A hypoxic-ischemic (HI) insult in the immature rat injures brain primarily through apoptosis. Apoptosis is regulated by Bcl-2 family proteins. The authors explored whether ceramide protects against HI in the immature rat, and whether Bcl-2 family protein expression is involved. Hypoxia-ischemia was produced in seven-day-old rats by ligating the right carotid artery, followed by 2 hours of 8% oxygen exposure. Thirty minutes after HI, C2-ceramide (150 μg/kg) was injected intraventricularly. Infarct volume was measured 5 days later. C2-ceramide reduced HI-induced brain damage by 45% to 65% compared with HI/dimethyl sulfoxide (DMSO) (vehicle control) or HI only groups. In separate experiments, brains of sham-operated control and HI only animals and animals subjected to HI plus C2-ceramide or DMSO infusion were sampled 6 hours, 24 hours, and 5 days after treatments and analyzed for Bcl-2, Bcl-xl, and Bax expression (Western blotting), and apoptosis (TUNEL assay). Augmented Bcl-2 and Bcl-xl levels in the C2-ceramide treated group were associated with a significant decrease in TUNEL-positive cells. The results support a protective role for ceramide in neonatal HI.
ISSN:0271-678X
1559-7016
DOI:10.1097/00004647-200101000-00005