Parametric Images of the Extrastriatal D2 Receptor Density Obtained Using a High-Affinity Ligand (FLB 457) and a Double-Saturation Method

The potential of positron emission tomography for the quantitative estimation of receptor concentration in extrastriatal regions has been limited in the past because of the low density of the D2 receptor sites in these regions and the insufficient affinity of the most widely used radioligands for do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2001-12, Vol.21 (12), p.1493-1503
Hauptverfasser: Delforge, Jacques, Bottlaender, Michel, Loc'h, Christian, Dolle, Frédéric, Syrota, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of positron emission tomography for the quantitative estimation of receptor concentration in extrastriatal regions has been limited in the past because of the low density of the D2 receptor sites in these regions and the insufficient affinity of the most widely used radioligands for dopamine receptors. The new method described in this paper permits the estimate of the D2 receptor concentration in the extrastriatal regions using a two-injection protocol and FLB 457, a ligand with a high affinity (20 pmol/L in vitro) with D2 dopamine receptors. This approach is not valid for the striatal regions because some hypotheses cannot be verified (because of the high receptor concentration in these regions). The experimental protocol includes two injections with ligand doses designed to significantly occupy the extrastriatal receptor sites (≈ 90%), while leaving less than 60% of the receptor sites occupied by the ligand in the striatal regions. The results obtained using this double-saturation method are in line with the concentration estimates previously obtained using the multiinjection approach. The receptor concentration is 2.9 ± 0.5 pmol/mL in the thalamus, 1.0 ± 0.2 pmol/mL in the temporal cortex, and 0.35 ± 0.13 pmol/mL in the occipital cortex. This study provides new arguments supporting the presence of a small receptor-site concentration in the cerebellum, estimated at 0.35 ± 0.16 pmol/mL The simplicity of the calculation used to estimate the receptor concentration lends itself easily to parametric imaging. The receptor concentration is estimated pixel by pixel, without filtering. This method permits estimation of the extrastriatal D2 receptor concentration using an experimental protocol that can easily be used in patient studies (i.e., single experiment, no blood sampling, short experiment duration).
ISSN:0271-678X
1559-7016
DOI:10.1097/00004647-200112000-00014