Dual-[ C]Tracer Single-Acquisition Positron Emission Tomography Studies

The ability to study multiple physiologic processes of the brain simultaneously within the same subject would provide a new means to explore the interactions between neurotransmitter systems in vivo. Currently, examination of two distinct neuropharmacologic measures with positron emission tomography...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2001-12, Vol.21 (12), p.1480-1492
Hauptverfasser: Koeppe, Robert A., Raffel, David M., Snyder, Scott E., Ficaro, Edward P., Kilbourn, Michael R., Kuhl, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to study multiple physiologic processes of the brain simultaneously within the same subject would provide a new means to explore the interactions between neurotransmitter systems in vivo. Currently, examination of two distinct neuropharmacologic measures with positron emission tomography (PET) necessitates performing two separate scans spaced in time to allow for radionuclide decay. The authors present results from a dual-tracer PET study protocol using a single dynamic-scan acquisition where the injections of two tracers are offset by several minutes. Kinetic analysis is used to estimate neuropharmacologic parameters for both tracers simultaneously using a combined compartmental model configuration. This approach results in a large reduction in total study time of nearly 2 hours for carbon-11–labeled tracers. As multiple neuropharmacologic measures are obtained at nearly the same time, interventional protocols involving a pair of dual-tracer scans become feasible in a single PET session. Both computer simulations and actual human PET studies were performed using combinations of three different tracers: [11C]flumazenil, N-[11C]methylpiperidinyl propionate, and [11C]dihydrotetrabenazine. Computer simulations of tracer-injection separations of 10 to 30 minutes showed the feasibility of the approach for separations down to 15 to 20 minutes or less. Dual-tracer PET studies were performed in 32 healthy volunteers using injection separations of 10, 15, or 20 minutes. Model parameter estimates for each tracer were similar to those obtained from previously performed single-injection studies. Voxel-by-voxel parametric images were of good quality for injections spaced by 20 minutes and were nearly as good for 15-minute separations, but were degraded noticeably for some model parameters when injections were spaced by only 10 minutes. The authors conclude that dual-tracer single-scan PET is feasible, yields accurate estimates of multiple neuropharmacologic measures, and can be implemented with a number of different radiotracer pairs.
ISSN:0271-678X
1559-7016
DOI:10.1097/00004647-200112000-00013