Oil–oil and oil-source rock correlations in the Alpine Foreland Basin of Austria: Insights from biomarker and stable carbon isotope studies

The Alpine Foreland Basin is a minor oil and moderate gas province in central Europe. In the Austrian part of the Alpine Foreland Basin, oil and minor thermal gas are thought to be predominantly sourced from Lower Oligocene horizons (Schöneck and Eggerding formations). The source rocks are immature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine and petroleum geology 2011-06, Vol.28 (6), p.1171-1186
Hauptverfasser: Gratzer, Reinhard, Bechtel, Achim, Sachsenhofer, Reinhard F., Linzer, Hans-Gert, Reischenbacher, Doris, Schulz, Hans-Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Alpine Foreland Basin is a minor oil and moderate gas province in central Europe. In the Austrian part of the Alpine Foreland Basin, oil and minor thermal gas are thought to be predominantly sourced from Lower Oligocene horizons (Schöneck and Eggerding formations). The source rocks are immature where the oil fields are located and enter the oil window at ca. 4 km depth beneath the Alpine nappes indicating long-distance lateral migration. Most important reservoirs are Upper Cretaceous and Eocene basal sandstones. Stable carbon isotope and biomarker ratios of oils from different reservoirs indicate compositional trends in W–E direction which reflect differences in source, depositional environment (facies), and maturity of potential source rocks. Thermal maturity parameters from oils of different fields are only in the western part consistent with northward displacement of immature oils by subsequently generated oils. In the eastern part of the basin different migration pathways must be assumed. The trend in S/(S + R) isomerisation of ααα-C 29 steranes versus the αββ (20R)/ααα (20R) C 29 steranes ratio from oil samples can be explained by differences in thermal maturation without involving long-distance migration. The results argue for hydrocarbon migration through highly permeable carrier beds or open faults rather than relatively short migration distances from the source. The lateral distance of oil fields to the position of mature source rocks beneath the Alpine nappes in the south suggests minimum migration distances between less than 20 km and more than 50 km. Biomarker compositions of the oils suggest Oligocene shaly to marly successions (i.e. Schoeneck, Dynow, and Eggerding formations) as potential source rocks, taking into account their immature character. Best matches are obtained between the oils and units a/b (marly shale) and c (black shale) of the “normal” Schöneck Formation, as well as with the so-called “Oberhofen Facies”. Results from open system pyrolysis-gas chromatography of potential source rocks indicate slightly higher sulphur content of the resulting pyrolysate from unit b. The enhanced dibenzothiophene/phenanthrene ratios of oils from the western part of the basin would be consistent with a higher contribution of unit b to hydrocarbon expulsion in this area. Differences in the relative contribution of sedimentary units to oil generation are inherited from thickness variations of respective units in the overthrusted sediments. The o
ISSN:0264-8172
1873-4073
DOI:10.1016/j.marpetgeo.2011.03.001