The Effect of Lignite and Comamonas testosteroni on Pentachlorophenol Biodegradation and Soil Ecotoxicity
Biodegradation of pentachlorophenol (PCP) in soil by autochthonous microflora and in soil bioaugmented by the bacterial strain Comamonas testosteroni CCM 7530 was studied. Subsequent addition of lignite, an abundant source of humic acids, has also been investigated as possible sorbent for PCP immobi...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2011-06, Vol.218 (1-4), p.145-155 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biodegradation of pentachlorophenol (PCP) in soil by autochthonous microflora and in soil bioaugmented by the bacterial strain
Comamonas testosteroni
CCM 7530 was studied. Subsequent addition of lignite, an abundant source of humic acids, has also been investigated as possible sorbent for PCP immobilization. Biodegradation of PCP and number of colony-forming units were determined in the three types of soil, haplic chernozem, haplic fluvisol, and haplic arenosol, freshly spiked with PCP and amended with tested sorbent. The enhancing effect of sorbent addition and bioaugmentation on PCP biodegradation depended mainly on the soil type and the initial PCP concentration. Microbial activity resulted in biotransformation of PCP into certain potentially toxic substances, probably lower chlorinated phenols that are more soluble than PCP, and therefore more toxic toward present biota. Therefore, it was necessary to monitor soil ecotoxicity during biodegradation. Addition of lignite resulted in a significant improvement of PCP biodegradation and led to a considerable decrease of soil toxicity especially in bioaugmented soils. The method could potentially serve as a promising technique in remediation technology for reducing high initial PCP content in contaminated soils. |
---|---|
ISSN: | 0049-6979 1573-2932 |
DOI: | 10.1007/s11270-010-0630-7 |