Interaction between connectivity and oscillatory currents in a heterogeneous neuronal network
Intrinsic oscillations are thought to play important and distinct roles in cognitive processes across nearly all regions of the brain. Their specific roles are highly dependent on their properties: low-frequency θ is thought to be important in the gating of cognitive processes, while high-frequency...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-05, Vol.83 (5 Pt 1), p.051908-051908, Article 051908 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intrinsic oscillations are thought to play important and distinct roles in cognitive processes across nearly all regions of the brain. Their specific roles are highly dependent on their properties: low-frequency θ is thought to be important in the gating of cognitive processes, while high-frequency γ is believed to be essential for binding and spike-timing-dependent plasticity. We investigated the role of an oscillatory drive for pattern formation of heterogeneous networks. Network heterogeneities were implemented as network regions having increased connectivity as compared to the rest of the network. We varied the properties of the oscillatory drive as well as network connectivity. We observed that the disparity in spatiotemporal patterning of activity between the structurally enhanced region and rest of the network was highly dependent on the frequency and amplitude of the oscillatory drive as well as network connectivity, generally favoring bigger enhancement of activity for high-frequency oscillations and phase locking with moderate enhancement of activity for lower-frequency oscillations. Thus, these results indicate that the specific role of the observed oscillations may depend on their dynamical interactions with the heterogeneous network. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.83.051908 |