Separation of deformable particles in deterministic lateral displacement devices
Using numerical simulations, we study the separation of deformable bodies, such as capsules, vesicles, and cells, in deterministic lateral displacement devices, also known as bump arrays. These arrays comprise regular rows of obstacles such as micropillars whose arrangements are shifted between adja...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-05, Vol.83 (5 Pt 2), p.056301-056301, Article 056301 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using numerical simulations, we study the separation of deformable bodies, such as capsules, vesicles, and cells, in deterministic lateral displacement devices, also known as bump arrays. These arrays comprise regular rows of obstacles such as micropillars whose arrangements are shifted between adjacent rows by a fixed amount. We show that, in addition to the zigzag and laterally displaced trajectories that have been observed experimentally, there exists a third type of trajectory which we call dispersive, characterized by seemingly random bumpings off the micropillars. These dispersive trajectories are observed only for large and rigid particles whose diameters are approximately more than half the gap size between micropillars and whose stiffness exceeds approximately 500 MPa. We then map out the regions in phase space, spanned by the row shift, row separation, particle diameter, and particle deformability, in which the different types of trajectories are expected. We also show that, in this phase space, it is possible to transition from zigzag to dispersive trajectories, bypassing lateral displacement. Experimentally, this is undesirable because it limits the ability of the device to sort particles according to size. Finally, we discuss how our numerical simulations may be of use in device prototyping and optimization. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.83.056301 |