Remarkable Change in Fluorescence Emission of Poly(diphenylacetylene) Film via in situ Desilylation Reaction: Correlation with Variations in Microporous Structure, Chain Conformation, and Lamellar Layer Distance

Fluorescence (FL) emission properties, microporous structures, energy‐minimized chain conformations, and lamellar layer structures of the silicon‐containing poly(diphenylacetylene) derivative of p‐PTMSDPA before and after desilylation were investigated. The nitrogen‐adsorption isotherms of p‐PTMSDPA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2011-07, Vol.32 (14), p.1047-1051
Hauptverfasser: Lee, Wang-Eun, Han, Dong-Cheul, Han, Dong-Hee, Choi, Heung-Jin, Sakaguchi, Toshikazu, Lee, Chang-Lyoul, Kwak, Giseop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorescence (FL) emission properties, microporous structures, energy‐minimized chain conformations, and lamellar layer structures of the silicon‐containing poly(diphenylacetylene) derivative of p‐PTMSDPA before and after desilylation were investigated. The nitrogen‐adsorption isotherms of p‐PTMSDPA film before and after desilylation were typical of type I, indicating microporous structures. The BET surface area and pore volume of the p‐PTMSDPA film were significantly reduced after the desilylation reaction, simultaneously, its FL emission intensity remarkably decreased. The theoretical calculation on both model compounds of p‐PTMSDPA and its desilylated polymer, PDPA, showed a remarkable difference in chain conformation: The side phenyl rings of p‐PTMSDPA are discontinuously arranged in a zig‐zag pattern, while the PDPA is continuously coiled in a helical manner. The lamellar layer distance (LLD) in the p‐PTMSDPA film significantly decreased after the desilylation reaction. Desilylation of the silicon‐containing poly(diphenylacetylene) in situ in film induced remarkable changes in fluorescence emission property, microporous structure, chain conformation, and lamellar layer structure.
ISSN:1022-1336
1521-3927
1521-3927
DOI:10.1002/marc.201100073