Adult Human Müller Glia Cells Are a Highly Efficient Source of Rod Photoreceptors
There is growing evidence that Müller glia cells (MGCs) might act as regenerative elements in injured retinas of fishes and amniotes. However, their differentiation potential in humans is yet unknown. We isolated Müller glia from adult human retinas and propagated them in vitro revealing for the fir...
Gespeichert in:
Veröffentlicht in: | Stem cells (Dayton, Ohio) Ohio), 2011-02, Vol.29 (2), p.344-356 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is growing evidence that Müller glia cells (MGCs) might act as regenerative elements in injured retinas of fishes and amniotes. However, their differentiation potential in humans is yet unknown. We isolated Müller glia from adult human retinas and propagated them in vitro revealing for the first time their ability to differentiate into rod photoreceptors. These results were also confirmed with mice retinas. Here, we describe conditions by which human MGCs adopt a rod photoreceptor commitment with a surprising efficiency as high as 54%. Functional characterization of Müller glia‐derived photoreceptors by patch‐clamp recordings revealed that their electrical properties are comparable to those of adult rods. Interestingly, our procedure allowed efficient derivation of MGC cultures starting from both injured and degenerating and postmortem human retinas. Human transplanted Müller glia‐derived photoreceptors integrate and survive within immunodeficient mouse retinas. These data provide evidence that Müller glia retains an unpredicted plasticity and multipotent potential into adulthood, and it is therefore a promising source of novel therapeutic applications in retinal repair. STEM CELLS 2011;29:344–356 |
---|---|
ISSN: | 1066-5099 1549-4918 |
DOI: | 10.1002/stem.579 |